skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nousiainen, Timo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate models and remote sensing retrievals generally assume that dust aerosols are spherical or spheroidal. However, measurements show that dust aerosols deviate substantially from spherical and spheroidal shapes, as ratios of particle length to width (the aspect ratio) and height to width (height‐to‐width ratio) deviate substantially from unity. Here, we quantify dust asphericity by compiling dozens of measurements of aspect ratio and height‐to‐width ratio across the globe. We find that the length is on average 5 times larger than the height and that climate models and remote sensing retrievals underestimate this asphericity by a factor of ~3–5. Compiled measurements further suggest that North African dust becomes more aspherical during transport, whereas Asian dust might become less aspherical. We obtain globally‐averaged shape distributions, from which we find that accounting for dust asphericity increases gravitational settling lifetime by ~20%. This increased lifetime helps explain the underestimation of coarse dust transport by models. 
    more » « less